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We investigate Bak-Sneppen coevolution models on scale-free networks with various degree exponentsg
including random networks. Forg.3, the critical fitness valuefc approaches a nonzero finite value in the limit
N→`, whereasfc approaches zero as 2,gø3. These results are explained by showing analyticallyfcsNd
.A/ ksk+1d2lN on the networks with sizeN. The avalanche size distributionPssd shows the normal power-law
behavior forg.3. In contrast,Pssd for 2,gø3 has two power-law regimes. One is a short regime for small
s with a large exponentt1 and the other is a long regime for larges with a small exponentt2 st1.t2d. The
origin of the two power regimes is explained by the dynamics on an artificially made star-linked network.
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Bak and SneppensBSd f1g have introduced an excellent
model to explain the evolution of biospecies, which exhibits
the punctuated equilibriumbehaviorf2g. The BS model has
two important features, namely, coevolution of the interact-
ing species and the intermittent bursts of activity separating
relatively long periods of the stasis. In the BS model, the
ecosystem evolves into a self-organized criticality with ava-
lanches of mutations occurring on all scales. Aside from its
importance for the evolution, the BS model has been also
shown to have rich scaling behaviorsf3g.

Since the BS model was suggested, the model has been
extensively studied on regular lattices or networksf3g. How-
ever, many important biosystems have been elucidated to
form nontrivial networks by the recently developed network
theoriesf4g. Important examples are the metabolic network,
the cellular network, and the protein networkf5–8g. Some of
the most important bionetworks are scale-free networks
sSFNsd f4g, in which the degree distributionpskd satisfies a
power lawpskd,k−g f4g. Thus it is important to study the
BS dynamics on SFNs or to find out how the base structure
of interacting biological elementsscells, proteins, or speciesd
affects the evolutionary change or dynamics of the given
biosystem. Until now, BS models on the nontrivial networks
were not investigated extensively. Christensenet al. f9g have
studied the BS model on random networkssRNsd. Kulkani et
al. f11g studied the BS model on small-world networks.
Slanina and Kotrlaf12g studied the forward avalanches of a
sort of extremal dynamics with evolving networks. Moreno
and Vazquezf13g studied the BS model only on a SFN with
g=3.

In this paper, we will study BS models on SFNs in com-
plete and comprehensive ways. One of the main purposes of
this study is to find which structure of interacting species is
the most stable network or the closest to a mutation-free
network under the coevolationary change with interacting
species. As is well known, SFNs with the degree exponent
2,gø3 are physically much different from those with
g.3 f4g. We study BS models not only on SFNs with
2,gø3 but also on SFNs withg.3 including random net-

works sor SFNs withg=`d. As we shall see, two important
results are found in this study. First, the critical fitness value
fc of BS models forgø3 is shown to have the limiting
behaviorfcsNd→0 when the number of nodesN of the net-
work goes to infinity. In contrast,fc approaches a finite non-
zero value asN→` for g.3. Furthermore,fcsNd on SFNs
with finite N is shown to satisfy the relationfcsNd
.const/ksk+1d2lN, which is also directly supported by simu-
lation. Second, for 2,gø3 the distribution of avalanches is
shown to have two power-law regimes. To find the origin of
this anomalous behavior of avalanches, we also study BS
models on an artificially made star-linked network and find
the two similar power-law regimes.

We now explain the model treated in this paper. All the
models are defined on a graphGr=hN,Kj, whereN is the
number of nodes andK is the number of degrees with the
average degreekkl=2K /N. Initially, a random fitness value
f i P f0,1g is assigned to each nodei =1,… ,N. At each time
step, the system is updated by the following two rules.sid
First, assign a new fitness value to the node with the smallest
fitness valuefmin. sii d Second, assign new fitness values to
the nodes which are directly connected to the node withfmin.
We use SFNs with the various degree exponentsg as Gr
=hN,Kj. To generate SFNs, we use the static modelf14g
instead of the preferential attachment algorithmf4g.

To understand the dependence of the critical fitness value
fcsNd on g, we generate SFNs withg=`, 5.7,2.15. To ex-
clude the effects of finite percolation clustersf9g and to see
the effect of the network structure itself, all the networks are
made to have an average degreekkl=4. To understand the
dependence on the number of nodesN, the networks with the
sizesN=103–106 are generated for eachg. To determine the
critical fitness valuefcsNd, we considerfmin as a function of
the total number of updatess f3g. Initially, fminss=0d is the
gap Gs0d, whereGssd is the maximum of allfminss8d for 0
øs8øs f3g. WhenGssd jumps to a new higher value, there
are no nodes in the system withf issd,Gssd. Thus
lims→` GNssd= fcsNd.

We measurefcsNd on the various SFNs. Figure 1 shows
the plot of fcsNd vs 1/N for SFNs with variousg. The values
of critical fitnessfcsN→`d evaluated from data in Fig. 1 are
0.21s1d, 0.19s1d, 0.15s1d, and 0.09s1d for g=`, 5.7, 4.3, and*Electronic address: ykim@khu.ac.kr
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3.5. The results in Fig. 1 mean that forg.3, fcsN→`d
→consts.0d.

Figure 2 shows the plot offcsNd vs 1/N for 2,gø3. For
g=3, fcsNd nicely satisfies the relationfcsNd,1/ ln N f13g.
For 2,g,3, fcsNd’s seem to follow a power lawfcsNd
,N−h and approach to zero asN goes tò . In contrast to the
results in Fig. 1,fc→0 for 2,gø3.

In the RN, every pair of nodes is randomly connected and
the degree distribution is a Poisson distributionf4,9g. So the
BS model on RNf9g is a good realization of the mean-field-
type random neighbor model. In the random neighbor model,
the fitness values of the randomly selectedsm−1d nodes as
well as the node withfmin are updated andfc=1/m f10g. The
result fcs`d=0.21 s1d on RN is very close to 1/skkl+1d= 1

5,
which is expected from the random neighbor model by set-
ting kkl+1=m f9g. In the steady state of the BS model, the
probability measurePsf , fcd is 0. Consider the case in
which the number of updates for each step is fixed asm, as in
the random neighbor model. To sustain the steady state in
this case, at most one new fitness value should be less thanfc
and the otherm−1 new values should be larger thanfc f10g.
Therefore, we can easily seemfc=1 or fc=1/m.

On a network, the number of updates depends on the de-
gree of the node withfmin, and the probability which a node
with degreek is connected to the node withfmin should be
proportional tok. For an updating step, the probability that a
node with degreek is updated is proportional tok+1, be-
cause the node itself can be the node withfmin. Therefore,
after an arbitrary update, the probabilityPminskd of a node
with degreek being the node withfmin is proportional tok
+1. This means thatPminskd in the steady state should be
proportional tok+1, or

Pminskd =
sk + 1dpskd

ok
sk + 1dpskd

=
1

kkl + 1
sk + 1dpskd.

The average numberNupdate of the nodes updated for one
updating process is therefore

Nupdate= o
k

sk + 1dPminskd =
ok

sk + 1d2pskd

kkl + 1
s1d

and thusfc is

fc =
1

Nupdate
=

kkl + 1

ok
sk + 1d2pskd

=
kkl + 1

ksk + 1d2l
. s2d

When the number of updates is fixed asm, Eq. s2d repro-
duces the mean-field resultfc=1/m. In SFNs with pskd
.k−g, Eq. s2d becomes

fc .5
finite, g . 3

A

kk2l
=

A

E k2−gdk

,
2 , g ø 3.6 s3d

Equations3d explains the results in Figs. 1 and 2, including
the resultfc.1/ ln N for g=3. For 2,g,3, measuredfcsNd
is fitted to the relationfcsNd=A/ kk2lN, whereA is constant
and kk2lN is kk2l for the network with the sizeN. The fitted
lines in Fig. 2 show that the relationfcsNd=A/ kk2lN holds
well and directly supports Eq.s3d.

An avalanche in the Bak-Sneppen model is defined as the
sequential steps for which the minimal site has a fitness
value smaller than givenfo f3g. For each network, we choose
fo to satisfy ffcsNd− fog / fcsNd=0.05. The probability distri-
butionPssd of avalanche sizes on the networks with the size
N=106 is shown in Figs. 3 and 4. All the data in Figs. 3 and
4 are taken in the steady states.

As is shown in Fig. 3,Pssd in SFNs withg.3 including
RN satisfy the normal power-law behavior with an exponen-
tial cutoff as Pssd=As−t exps−s/scd. The curves in Fig. 3
represent the fitted curves to data forPssd. From those fit-

FIG. 1. Semilog plot of the thresholdfcsNd vs 1/N on RN and
on SFNs with g=5.7, 4.3, and 3.5. Used network sizes areN
=103,104,105, and 106. The solid lines between data points are
obtained by simple linear interpolations.

FIG. 2. Log-log plot offcsNd andA/ kksNd2lN vs 1/N on SFNs
with g=2.75, 2.40, and 2.15. Symbols are forfcsNd and the lines
are forA/ kksNd2lN, whereA is a constant. The top inset shows the
plot of fcsNd vs 1/ lnN for g=3.0.
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tings, the obtained values fort are 1.5 for RN andg=5.7,
and 1.65 forg=4.3. The result for RN and SFN withg
=5.7 is expected from the random neighbor modelf10g. As g
decreases to 4.0 or so,t increases to 1.65. Forg=3.5, how-
ever, the best fitting function isPssd=Bs−t with t=1.65 and
we cannot find the cutoff-dependent behavior within our
data. Instead, it is even observed that tails of measured data
for g=3.5 arounds=103 seem to deviate from the fitting
function Pssd=Bs−t and are larger than values estimated
from the best fitting function. This rather anomalous tail be-
havior of Pssd for g=3.5 should be the signal of the anoma-
lous behavior ofPssd for 2,gø3.

In contrast to the simple power-law behavior forg.3,
anomalous behavior forPssd shows up for 2,gø3 sFig. 4d.
We can see two power-law regimes clearly forPssd in Fig. 4.
Initially, the avalanche size distribution followsPssd.s−t1

about 1 decade or so. After this short initial power-law re-
gime, the long second power-law regime appears asPssd
.s−t2, wheret1.t2. The measured exponentst1,t2 are sum-
marized in Table I.

Compared to the behavior of the avalanche size distribu-
tion for g.3, this anomalous behavior ofPssd is very pecu-
liar. In the steady state, it is expected that the node withfmin
sthe minimal noded is most frequently found among the last
updated nodesf10g and then the minimal node locally per-
forms a random walk. However, there can be longer jumps of
any length with a very low probability. If this kind of a
jumpy random walkis the motion of the minimal node, then
a subnetwork consists of ahub nodescenter noded and many
slave nodesdirectly linked to the hub should be important to
decide the behavior ofPssd. Due to thejumpy random walk
behavior, the more slave nodes the hub node has, the longer
is the stay of the minimal node or the longer the avalanche
exists at the given subnetwork. This effect explains the sec-

ond power-law regime with the exponentt2 in Fig. 4, be-
causekk2l diverges for 2,gø3, and so the subnetwork of a
hub node and many slave nodes should be the main substruc-
ture in SFNs with 2,gø3. Evidently, the jumpy steps of
the jumpy random walkmake the shorter avalanches possible
and this effect explains the first power-law regime with the
exponentt1.

To support the qualitative explanation of the two power-
law regimes, we consider an artificially made star-linked net-
work shown in Fig. 5. In the star-linked network, a main
subnetwork consists of a centersstard node and many dan-
gling slave nodes linked directly to the star node. Then the
center nodes are linked hierarchically to one after another as
sketched in Fig. 5sad. We make a star-linked network in
which there are 25 base subnetworks with 500, 480,…, and
20 slave nodes, respectively. In this network, we perform BS
dynamics and findfc=0.123.Pssd is also measured on the
star-linked network and is shown in Fig. 5sbd. We find the
two power-law regimes with the exponentst1=3.7 andt2
=1.27. The plateau between two power regimes in the data of
Pssd in Fig. 5sbd is probably from the discrete distribution of
the number of slave nodes.

In conclusion, we study BS models on SFNs with various
g. For g.3, fc approaches a nonzero value in the limitN
→` and Pssd shows normal power-law behavior witht
ù1.5. Forgø3, fc approaches zero asfcsNd.A/ kK2lN and

TABLE I. Two power-law exponents,t1 andt2, for SFNs with
gø3.

g t1 t2

3.0 2.09 1.59

2.75 2.22 1.47

2.4 2.27 1.32

2.15 2.30 1.20

FIG. 3. Log-log plot of the avalanche size distributionPssd on
SFNs withg=5.7,g=4.3,g=3.5, and on RNsInsetd. The curves for
g=5.7, g=4.3, and RN denote the fits of the formPssd
=As−t exps−s/scd to the data. Obtained exponents aret=1.5 for
both g=5.7 and RN, andt=1.65 for g=4.5. The line forg=3.5
denotes the fit of the formPssd=As−t st=1.65d without cutoff.

FIG. 4. Log-log plot ofPssd on SFNs withg=3 stop insetd,
2.75, 2.4, and 2.15. Two crossing lines for each data set denote the
two power-law regimes,Pssd=As−t1 andPsSd=Bs−t2. Obtained ex-
ponents,t1 andt2, are shown in Table I.
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Pssd has two power-law regimes. The origin of the two
power regimes is explained by the dynamics on a star-linked
network.

In Ref. f13g, BS dynamics only on a SFN withg=3 was
studied and the only meaningful numerical result was to
show fcsNd.1/ ln N. Referencef13g suggested a relation
similar to Eq.s2d from a rate equation which was obtained
by a naive and immature analogy of BS dynamics to the
epidemic dynamics on SFNsf15g. However, the rate equa-
tion should never be the exact one. Even the exact rate equa-
tion for the simple random neighbor modelf10g is much

more complex than that of Ref.f13g or the epidemic dynam-
ics. The correct rate equation for BS dynamics on SFNs must
be derived by considering all the terms of the rate equation in
Ref. f10g and the base network structure simultaneously and
correctly. The derivation of the correct rate equation should
be a subject for future study. In Ref.f13g, it was argued that
Pssd for g=3 satisfies a simple power law witht.1.55. By
the brute-forced fit of the relationPssd.s−t to our data in
Fig. 4, we also obtaint.1.6 for g=3. However, this blind
application of the simple power law should be wrong and
there should exist the two-power law regimes even forg
=3. One can easily identify the two power-law regimes in the
Pssd data of Ref.f13g rather clearly, although the tail parts of
their data are qualitatively poor and show large fluctuations.

The occurrence of two power-law regimes forPssd was
also found in BS dynamics on small-world networksf11g and
in an extremal dynamics with evolving networksf12g. How-
ever the origins of the two power-law regimes were com-
pletely different from ours. The origin in the small-world
networks was argued to be the long-range connectivity of the
networksf11g. The extremal dynamics with evolving random
networksf12g changes the network structure and is not ex-
actly the same as BS dynamics. Furthermore, the evolving
network develops many disconnected clusters. In the model
f12g, the forward avalanches are mainly measured. The for-
ward avalanchesf12g should be affected by the dynamical
aggregation and splitting of subnetworks by the extremal dy-
namics, which should be the origin of the two power-law
regimes. In contrast, our avalanches of BS dynamics are
measured on a fully connected static scale-free network and
should not be directly comparable to the avalanches on dy-
namically varying networks.
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FIG. 5. sad Schematic of a star-linked network which consists
of 25 subnetworks with 500, 480,…, and 20 dangling slave nodes.
sbd Plot of Pssd on the star-linked network structure. Two
power-law regimes withPssd=As−t1st1=3.7d and Pssd=Bs−t2

st2=1.27d are clearly shown by the lines.
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